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Motivations

Y Wavelets: great impact in image processing

Y PDEs increasingly effective in image processing

Our goal: combine best of both techniques



Introduction

Typical image processing tasks:

YRestoration (denoising, deblurring)
YEnhancement
YCompression
YSegmentation

YPatent Recognition
¥Still v.s. Video

Applications:

Medical, Biotech, Physical Science, Astronomy, Law
Enforcement, Environment, Entertainment, Military,
Chemustry, ..



Introduction

Y Wavelets representation (Harmonic analysis)
giveny(x) .y, (x) = 2°y(2'x - k) — Orth. basis

fi A hoAQ ﬂﬂo@.
()= J e, @), =[S0 e
/ M.b». e ! .‘, .\ High Freq.
Y Wavelets in image compression.  ifference)
YGood features:
¥Orthonormal basis

YConcentrate energy
YApproximate smooth function efficiently
YHigh order of accuracy
YMultiresolution
YFast transform algorithms
YLimitation: Oscillations at discontinuities



Introduction

Y PDE s 1n Image Processing

¥New alternative to FFT/wavelets and stat. approaches
YTreats images as piecewise continuous functions
connected by edges

YUse PDE concepts: gradients, diffusion, curvature, level
sets

YVariational: Euler-Lagrange gives PDE, e.g. TV denoising

min || Vu | \V/
S.T. .N. - V| — - AMu-u,)=0
Ju-u,ll<o Vu|
YAdvantages:
YSharper edges,

Yoetter geometric properties
Yexploit sophisticated PDE and CFD techniques: Hamilton-
Jacobi, shock capturing



Motivations

YAvoiding Gibbs phenomenon:
Oscillations at discontinuities.
¥Reason for Gibbs:

Discontinuities —— Large high freq.
Truncate high freq. —— Destroy discontinuities
—— Generate Oscillations.

YExamples:

— Fourier: well known.

— Wavelets: Better (more local) but still there.



Motivations ...

DB4 Low Pass Approxemation,n=8192 laval=3
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Gibbs oscillations at a discontinuity




Motivations ...
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3-level DB4 approximation
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Original function
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3-level DB4 coefficients, large high frequencies corresponding to jumps



Motivations ...
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2-D Gibbs
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Original 2-D Function
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Gibbs leads to poor results

Y Approximation error

Y Denoising: Edge smearing and oscillations

Y Compression: worse with same ratio



Motivations

¥ Using PDE techniques 1n wavelets:

¥Moditfy wavelet transforms: Adaptive ENO-
Wavelet Transforms (ENO schemes are very
popular and successful in CFD), such that no large
high freq. coefficients are generated.

¥Modity the standard wavelet coefticients: Total-
Variation (TV) based wavelet image compression
(TV leads to nonlinear PDE s )
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Topic 1

ENO-wavelet transform and 1ts
application 1n 1image compression



Goals

Modity standard wavelet transforms to have the
following properties:

1. Essentially Non-Oscillatory (ENO).
2. Retain Pyramidal filtering framework.

— Functional replacement of existing wavelet transforms
3. Error bound depends only on derivatives
away from discontinuities.

4. Minimal extra cost and storage.

— Proportional to number of discontinuities.



Goals ...
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Pyramidal Wavelet Transforms

X1 Q) / Oy,
B, b

Consider p vanishing moments wavelets: p=(I+1)/2
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Approaches

¥All linear transforms:
¥Gibbs Oscillations

¥Must use data-adaptive nonlinear transforms

¥Thresholding (Hard and Soft):
¥Donoho, DeVore, Daubechies

YLimitation:Complicated data structure to record
locations of large high freq.

YGeometry and Wavelets:
Special basis to represent discontinuities
YCandes and Donoho: Rigdelets and Curvelets.
YMallatand Collaborators: Bandelets




Approaches ...

¥Lower the order of filter at discontinuities:
YClaypoole, Davis, Sweldens, Baraniuk[99]: Adaptive lifting

YLimitation: lower the order of accuracy

YENO one-sided approximation:

YHarten (93,94)
YAt each point, adaptively form interpolation polynomial

¥Never differencing crossing discontinuities.

YLimitation:
¥Difficult for pyramidal wavelet transforms

¥Need function values to form divided difference table at each point
YMore extra cost

¥Cohen and collaborators: some recent advances



Approaches ...

¥ENO-wavelets:

¥Do not want to change filters
¥Main idea: Change data adaptively
¥Make use of ENO s one-sided information 1dea

YGoal: Do not generate large high frequency coef.



The ENO Idea

ENO Approximation Scheme

Approximation Interval =in—+L3 ={O—+23 wlO+33

EMNO Selected Stencil

Possible EINO
Stencil

Standard Stencil

YENO: invented by Harten, Engquist, Osher, Chakravarthy (87)
¥Use one-sided information
¥Newton divided differences to select smoothes stencil

YVery popular and successful in shock capturing and CFD



The ENO-wavelets Idea

YAssume:
¥Know location of discontinuities

YDiscontinuity Separation Property (DSP):

¥I'wo consecutive jump points separated by /+3 data points

¥ldea:

YUse extrapolation from smooth side of jumps
YUse same filters, but applied to smooth data

¥Must take care of

YRetain accuracy orderp
¥Minimal extra cost and storage
YInvertibility. able to recover the original data



Direct Function Extrapolation

¥From left side Values @,,,,,

—_—

YFrom right side —— Values «

J+l,m

— |
.\-—,/WC.U? \w?. | Q_ \uv\.,mt !

Joi+1?

[ s B

_ O«&TT \uu\.n.L _

YApply same filters to smooth data on both sides
YProblem: double storage at each discontinuity



Coarse Level Extrapolation

YExtrapolate coarse level coefficients to determine the
the fine level values.

Store low freq. Of

JUMP

Store high freq.3




Example 1

¥Data: (1 1.1 2 2 2)

¥Standard Haar: o = ( )\NM )\W ;MW ,p=(C 0 |w 0 )

¥Standard linear approximation:

3 3
(11 = = 2 2 )
2 2
YENO-Haar:
y 2 2 2
Extrapolation: T 1 1 x u
4 4
Coefficients: 9 0
oefficients: J2 )\Mw\wuh u
2 2 O O
V2 W2
Store:

QuA)W )M_m )M_Mvumu@ 0 0)

Linear approximation: same as the initial



Example 2

ata: (0 1 2 10 11 12)

¥Standard Haar: QHA 1 12 23 vumuﬂlk IM IFV

V2o 2 W2

¥Standard linear approximation:

05 05 6 6 11.5 11.5)

YENO-Haar:
y 10 11 ﬁwu

uﬁxqm%o_m&osﬁo 1 2

X
YCoefficients: 20 23 0 _ 1
o 2 V2| 4 NS
1 1 ’ _ 1 _ 3
V2 W2 2o W2
¥Store:

(& B B W

YLinear approximation:

05 05 05 10 11.5 11.5)



Example of ENO-DB4

4-level DB4 v.s. ENO-DB4 Zoom in at a discontinuity

Large high frequencies in DB4 but not in ENO-DB4



Error Bound and Stability

Error: f;(x) 1s the J-th level ENO-wavelet

approximation. If /,(x) satisfies the
DSP, then

£ (x) = £,(0)| = Cax)”| £ (x)
¥Denote Ax =27/
¥D 1s the set of discontinuities

(a,p)\D

YWavelet function has p vanishing moments
¥The standard error bound depends on :\ " (x) )

Stability:If || f(x)-g(x)||=e and same set of
discontinuities detected, then

| f—gll=0(e)




Outline of the proof

YConsider individual jump
¥Consider three cases

¥YDirect function extrapolation: preserve order

Y¥Extend 3 = O — (p-1)-th order smooth
extension

YExtrapolating KE extrapolation in wavelet

spaces —— same order extrapolation 1n
function space



Properties

YOutput sequence: same size as Input sequence

Half high frequencies and half low frequencies.

YPerfectly invertible
YEXxtra storage: remember the location of jumps (ENO mapping)

YCost: Algorithmic complexity remains O(n)
YStandard cost: O(nl) ¥Extra cost: O(dl), d: number of jumps

YRatio of extra over standard: O(d/n)
YKeep p-th order accuracy

¥Stable
¥Can use other extrapolation schemes
YApply to other (non-orthogonal) wavelets

¥2-D by tensor products



= I 1 I I I I 1 0 Ek 1 I 1 1 I 1

The level-1 ENO-DB6 v.s. DB6 at places where

YDSP satisfied (left bump): exactly.

YDSP invalid (middle bump): error comparable.
Ylump in derivatives (right corners): exactly.

L




Order of Approximation

Orderin L~

¥All standard: No order.
YENO-Haar: first.
YENO-DB4: second.
YENO-DBG6: third.
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Order of Approximation ...

Order in [?

¥All standard: No order
YENO-Haar: first
YENO-DB4: second
¥ENO-DBG6: third

_.N Nor M arrar

- Haar

—— ENC—Haar m
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oisy Data
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Haar

Haar, level=3, keap 64x64 coefficients

a0
100
150
200
250
300
350
400
450

200

50 100 150 200 250 300 350 400 450 500

3-level Haar, edges and interior are fuzzy



ENO-Haar

ENO-Haar, level=3, keep 64x64 coefficients

| — - .
50 100 150 200 250 300 350 400 450 500

3-level ENO-Haar, Edges and interior are clearer



2-D Example ...

_______

=
7

ll

50 oo 150 2000 250 300 350 400 450 500

Original 2-D Function




Haar

1040

150

200 -

250

300 -

350

Haar, lewal=3, keap B4x64 coafliciants

50 o 150 200 2500 300 350 400 450 500

3-level Haar, keep 64x64 coefficients



ENO-Haar

EMO-Haar, leval=3, keap B4x64 coallicien!s

100

150 F

200

250

m.Eﬁ-_-___ i
50 100 150 200 250 300 350 400 450 500

3-level ENO-Haar, keep 64x64 coefficients



Haar, Hard Thresholding

Haar, Hard Thrasholding, keep 64x64 coalliciants

100

150k

200

250

300

350 -

400

as0
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3-level Haar, Hard thresholding, keep 64x64 coef.



ENO-Haar, Hard Thresholding

ENO-Haar, Hard Thresholding, leval=3, keap B4xG coallicients
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3-level ENO-Haar, Hard thresholding, keep 64x64 coef.
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Application in Image Compression

YRepresent images by fewer wavelet or ENO-wavelet
coefficients

s this sufficient for the efficiency of image compression?

YAnswer 1s NO

¥YReason: there are more components, not only transforms, in
a compression system, and they have to be considered too.



Components of Image

Compression Systems

Input
Image

—» Transform — Quantizer —  Coder —>

Y Transform: redundancy removal,

e.g. DCT, Wavelets

Output
file

Y Quantizer: entropy (information) reduction,
e.g. Scalar quantizer: real number — integers

Y Coder: lossless coding

e.g. Huffman, LZW, arithmetic coding




Task

Y Efficiency in storage
Rate (bits/pixel) as low as possible.

Y Accuracy 1n representations

Distortion (error: PSNR) as small as possible.

¥ Optimize rate-distortion trade-off on a range
of rates specified by the users.



Multi-resolution (MR) Codes

YMR code: a single compression system to reproduce at
a variety of rates and resolutions.

YAlso called progressive transmission, embedded or
successive refinement codes.

YLow-resolution are embedded in higher-resolution of the
same data set.

YApplications: a single source must be accessible to
different users or at different rates that varies, €.g.
1mages on internet.




Multi-resolution (MR) Codes




Multi-resolution (MR) Codes

I

YEmbedded Coding —v

\

¥Rate-Distortion
Trade-off

Distortion




Why MR Codes?

YApplications: a single source must be accessible
to different users or at different rates that varies,
€.g. Images on internet.

¥Different demands at different rates



Rate-Distortion Trade-off

*A lower bound on the rate-distortion curves (Shannon).

eOne can design codes to achieve the bound arbitrarily
close at a given rate.

Distortion

oOptimal: best rate-distortion trade-off.
D. ..
D, ?w- eOptimal code at one rate is
not optimal at a different rate
D, {4
RO “ > ¥Optimize according

I SRR Rae {0 the rate priorities



Multi-resolution (MR) Codes

YCreating an L-resolution code with optimal performance
at ONE of its L resolutions: Not Difficult

YConstructing an L-resolution code with optimal
performance at MORE THAN ONE of its L resolutions

may not be possible
Distortion

YPriorities may be necessary.




Rate-Distortion Optimization

¥ MR Lagrangian measure = MT@Q +BR, |

ﬁﬁﬁﬁﬁﬁ

¥ Priorities {a,,B,}
¥ Minimize J — optimal performance
Y Trade-off of ENO-Wavelet: Storage of

locations of discontinuities v.s. Relative
savings of smaller high freq.




State of the art compression: GTW

Y Group Testing on Wavelet (GTW) coefficients 1s a recent
(Hong & Ladner 2000) lossy coding technique which can
efficiently represent few significant elements 1n a large pool
of coefficients.

Y Zero-tree type of coding algorithm implemented in bit-
plane fashion: instead of deciding whether to keep a whole
coefficient, the decision 1s made on every bit of the
coefficient.

Y Key trade-off: for every-one bit of a coefficient, storing 1t
as 1 will decrease the distortion, but increase the rate.



State of the art compression: GTW

YHong & Ladner, 2000
Y/ero-tree type of bit-plane coding
YUse Group Testing (GT) to wavelet coefficients

YGT: an efficient way to identify few significant
elements 1n a large pool



Optimization of GTW

YDugatkin Zhou, Chan and Effros (2002)

YOptimize the Lagrangian rate-distortion trade-off
performance: ;_ M?@ +pR] > a.p are weights.

YIncorporate ENO-Wavelet Coefficient in the
optimization procedure.

Ylrade-off of ENO-Wavelet: Storage of locations of
discontinuities v.s. Relative savings of smaller high
freq., which 1s considered in the Lagrangian



Optimization of GTW

YOptimize the Lagrangian rate-distortion trade-off
performance at each bit-plane

YIncorporate ENO-Wavelet Coefficient in the
optimization procedure.



Algorithm

Standard Class & MR ~=m<%_~.um ¢
Wavelet |— |Group-size —> . =
s [agrangiar Wavelet
['ransform stimatio T f
Adjust GTW GTW —ransiormi
Coeffs. Encoder Decoder Tnverse
ENO Class & MR ENO
Wavelet |—>|Group-size —> - =
.. | agrangiar Wavelet
T'ransform m:Es:os_
Transformi
Encoder Decoder




PSNR vs. Rate results
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Visual quality

Standard GTW New OPT-GTW with ENO

cameraman reconstructed image at R=0.1bpp, better
edge reconstruction
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Topic 2

TV models for wavelet thresholding and
its application in 1mage compression and
denoising



TV Image Processing

YGreat success of TV 1n 1image processing,
(Rudin, Osher, Fatem1): smooth oscillations
but retain sharp edges.

YMany people work on 1t: Chan, Osher s group,
Vogel, Santosa, Dodson, Plemmons, Chambolle,
Lions

YApplications 1n 1image processing: Denoising,
Debluring, Segmentation, Color images, Image
on manifolds, Digital TV filters



Motivations for Topic 2

YGreat success of TV 1n 1image processing,
(Rudin, Osher, Fatemi): smooth out
oscillations but retain sharp edges.
YDenoising (Chan, Osher s group, Vogel ...)

¥Blind deconvolution: (Chan-Wong)
¥Color TV:(ChanBlomgren)

¥Digital TV filters: (Chan-Shen)
YSegmentation:(Chan-Vese)

YImages on manifolds: (Osher-Cheng)



TV in Image Processing

¥Chambolle,DeVore, Lee and Lucier:
min. in Besov by wavelets

YTV denoising + Wavelet Thresholding:
better ratio or quality (Chan-Zhou, 1998)

YOscillations generated by thresholding
increase TV norm



TV in Wavelet Thresholding

¥ Chan & Zhou (2000): TV optimized wavelet
coefficients in 1image compression and
denoising.

¥ Durand & Froment (2001): fixed the retained
wavelet coefficients in hard thresholding and
adjust others to minimize the TV norm to
erase the oscillations.

¥ Candes (2001): TV post processing for
curvelet thresholding



General TV Model

min ».:4:%“ X)idx + | N:w

B, ikl
ST. ? 7 = m

Where
U= M \u@.%@&» C@
T,

z = MQ 4@ (X) — Observed image
7

m ——Given integer



General TV Model

YNonlinear integer optimization

YDifficulties: Integer constraint, too

many local solutions, nonlinear
equations.

YSelection of A : L-curve, training
1mages



General TV Model

A——0, Standard Thresholding
A —— 00, constants

A : Control the small feature size to
preserve (Strang-Chan).



TV Hard Thresh. Model

min_ A [[Vu(B, ) + - 2]

Bxs(J.k)Ey

Euler-Lagrangian

[ Vu
|>.\< 74& @ dx+2(B;, -a;,)=0

A\u\«vam



Approximation to Constraint

7N 7 = 7171
Approximate by:
AAM log(1+B,,7)-m)*<y* Qlshausen & Field
)

AM 7\&,% -m)*=y*,p—0  Donoho(99)



TV Relaxation Models

&\«w _\ \mvam

aa §§Q§§% N: :AME??V m)*

OR

min p,:ﬁim éﬁx;: N: +2M7m; -

j, \«nﬁ\ \ﬂvam



Euler-Lagrangians

b
:\w;

=0

|>%<

Or

Z& 0 xdx+2(p;, -, LE&ME%% K)=m)

B
7\&»7

Vu
74:7 S?&x+wﬁ\w; |Q§v+NﬂAM7m§ —m)

Lid




Numerics

YTime Marching, Fixed-point, Primal-Dual...

YRegularizations to prevent blow-up

YTransform Data between wavelet spaces
and physical space.



Fixed-point Iterations

Linearize the nonlinear terms by using
previous approximations: €.g.

L§<.

\ 4&31 /

/ 74@% \@i

(J,k)

dx+2(B,,"" -a,,)=0

c1,



Advantages over TV +Thresh.

YReduce the oscillations generated by
thresholding

YMay directly operate on wavelets, easiler to
combine with comp. schemes.

YWork on smaller space, can be faster
potentially.



TV Hard Thresholding

A=1 A=01

_...

A=001  A=0.001
4-level DB4, keep 50 largest coefficients



TV Thresholding

Hard Thresh.

log-function p-norm

4-level DB4, keep 50 largest coefficients A = 0.02



H-1 Regularization

[
hard thins s koing
— TV Compression
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4-level DB4, keep 50 largest coefficients
A =0.0002



TV Hard Thresholding

5 1terations

1 c iterations 20 1terations
4-level DB4, keep 50 largest coefficients A = (.01
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DB6 Hard Thresholding

Wavelet Hard Thresholding

4-level DB6, Hard thresholding, keep 64x64 coef.



DB6, TV Hard Thresholding

TV Wavelet Comprassion

100

150

a0 1040 150 200 250

4-level DB6, TV Hard thresholding, keep 64x64 coef.



Original Noisy Image

Observad

B0

100
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200

250




DB6, Hard Thresholding

Wawvelat Hard Thresholding

BOr

100+

&

= i L] ..l_.

o

200

250

| 1 | - | |
&0 100 150 200 250

4-level DB6, Hard thresholding, keep 64x64x3 coef.



DB6, TV Hard Thresholding

TW Wavelat Compression

BOr
i ,. .

*

200

250

|
_u ,__u_u ._m_u m_u_u mm_u

4-level DB6, TV Hard thresholding, keep 64x64x3 coef.



Wavelet Image Inpainting

YCoeftficients are damaged or lost 1n
transmission

¥Take x| to include all coefticients

¥Minimize TV norm s.t. constraints only
on retained coefficients, no constraint 1s
imposed on the lost coefficients.

«H&SWA if X 1slost,
otherwise | ><




Wavelet Image Inpainting

Cnginal Moigy Image

J0

Original noisy test image



Wavelet Image Inpainting

Hacanmed Image” 10% wannebsl coallicianls ana | osf

el 40 40

Received Image with 20% coefficients lost,
particularly, some edges are damaged



Wavelet Image Inpainting

Inpainned imape by [V=wavalets

J0

Inpainted 1mage by minimizing TV norm, it
reduced noise while filling in the edge shape



Wavelet Image Inpainting

Received Coaefficients: 1026 wawvelet coefficients are lost

OOOOO

Vi 1 L1,
o -~

JRLLELLELLLY
TTATTATTRTTY T L]

' ' ' P 1
o 1000 2000 I00o0 4000 5000 G000

Imp ainted coefficients by TW wawvelets

" X " P L
[a] 1000 2000 clelalal A4000 5000 000

Wavelet coefficients: lost (top), TV-norm inpainted (bottom)
Certain coefficients are significantly changed to min. TV norm



Conclusions

YTopic 1: ENO-wavelets

YGoals achieved: satisfies all goals:
YEssentially Non-Oscillatory

YKeep pyramidal filtering framework
¥Stability and error bound independent of discontinuities

—

¥Minimal extra cost (ratio O(d/n) ) and storage (O(1) bit/jump)

YGenerality: Can be applied to other wavelets
YApplication: incorporate ENO-wavelets 1n the optimization
framework of GTW and achieve significant performance gain.

YTopic 2: TV model for waveletthresholding

YImprove the denoising and compression in wavelet
thresholding. Reduce the edge oscillations.



